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Abstract

By replacing the ordinary product with the so-called?-product, one can construct an analog of
the anti-self-dual Yang–Mills (ASDYM) equations on the noncommutativeR4. Many properties
of the ordinary ASDYM equations turn out to be inherited by the?-product ASDYM equation. In
particular, the twistorial interpretation of the ordinary ASDYM equations can be extended to the
noncommutativeR4, from which one can also derive the fundamental structures for integrability
such as a zero-curvature representation, an associated linear system, the Riemann–Hilbert problem,
etc. These properties are further preserved under dimensional reduction to the principal chiral field
model and Hitchin’s Higgs pair equations. However, some structures relying on finite dimensional
linear algebra break down in the?-product analogs. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The deformed ADHM construction of Nekrasov and Schwarz [1] suggests that the
anti-self-dual Yang–Mills (ASDYM) equations will be “integrable” on noncommutative
space–times as well. This is also advocated by the work of Kapustin et al. [2] that extends
the ordinary twistorial interpretation of the ADHM construction [3,4] to the noncommuta-
tiveR4. Since twistor theory is a clue to the integrability of the ordinary ASDYM equations
[5], it is natural to expect that the ASDYM equations on the noncommutativeR

4, too, will
be integrable.
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This issue is also interesting from the point of view of integrable systems of two-
dimensional field theories, such as the principal chiral field (PCF) model [6,54] and Hitchin’s
Higgs pair equations [7]. It is well known that these integrable systems can be derived from
the ASDYM equations by dimensional reduction. If a similar reduction procedure works
on the noncommutativeR4, it seems likely that the integrability of the four-dimensional
system will be inherited by the two-dimensional systems. This four-dimensional point of
view can be an alternative approach to recent studies on the PCF and Wess–Zumino–Witten
(WZW) models on noncommutative space–times [8–12].

This paper aims to answer these questions. The gauge group is assumed to beU(N)

throughout the paper. The ASDYM equations on the noncommutativeR
4 are then obtained

from the ordinary ASDYM equations by replacing the product of fields in the field equations
with the so-called “?-product” (the commutator of which is the Moyal bracket [13]). We shall
show that almost all part of the twistorial and integrable structures of the ordinary ASDYM
equations can be extended to the noncommutativeR

4 by the same substitution rule. What
breaks down is the part where tools of finite dimensional linear algebra (determinants,
Camer’s formula, characteristic polynomials, etc.) are used.

This paper is organized as follows. Section 2 presents the formulation of the?-product
ASDYM equations. Section 3 deals with the twistorial and integrable structures of the
?-product ASDYM equations. Section 4 is concerned with some implications of the de-
formed ADHM construction. Section 5 is devoted to two-dimensional reductions. Section
6 is for conclusion.

2. ASDYM equations on noncommutativeR4R4
R

4

2.1. Space–time coordinates

The noncommutativeR4 is characterized by the commutation relations

[xj , xk] = iθjk (2.1)

of the space–time coordinates, whereθjk are real constants. These commutation relations
can be extended to the associative?-product

f ? g(x) = exp


 4∑

j,k=1

i

2
θjk∂xj

∂x̃k


 f (x)g(x̃)

∣∣∣∣∣∣
x̃=x

(2.2)

of functionsf andg on the space–time.
We now introduce complex coordinates(z1, z2) that satisfy commutation relations of the

form

[z1, z2] = −ζC, [z̄1, z̄2] = −ζ̄C, [z1, z̄1] + [z2, z̄2] = −ζR. (2.3)

For instance,z1 = x3+ ix4 andz2 = x1+ ix2 give such complex coordinates after a suitable
orthogonal transformation of the real coordinates. The complex constantζC and the real
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constantζR form a three-vector(ζR, ζC) inR×C ' R3, and can be rotated to any direction
by theSU(2) action(

z1 z2

−z̄2 z̄1

)
7→
(

α β

−β̄ ᾱ

)(
z1 z2

−z̄2 z̄1

)
(2.4)

(|α|2+ |β|2 = 1) on the space–time coordinates.

2.2. ASDYM equations

Let A be anN × N matrix-valued one-form representing anU(N)-connection. Let
A1, A2, A3, A4 denote the components in the real coordinate frame, andAz1, Az2, Az̄1, Az̄2

the components in the complex coordinate frame:

A =
4∑

j=1

Aj dxj =
∑

a=1,2

Aza dza +
∑

a=1,2

Az̄a dz̄a. (2.5)

The covariant derivatives can be accordingly written as

∇xj
= ∂xj

+ Aj , ∇za = ∂za + Aza , ∇z̄a = ∂z̄a + Az̄a . (2.6)

On the noncommutativeR4, the components of the curvature two-formF =∑j,kFjk dxj ∧
dxk are defined as

Fjk = ∂xj
Ak − ∂xk

Aj + [Aj , Ak]?. (2.7)

Note that the usual matrix commutators [Aj , Ak] = AjAk − AkAj are now replaced by
the?-product commutators

[Aj , Ak]? = Aj ? Ak − Ak ? Aj . (2.8)

The componentsFz1z2,Fz̄1z̄2 andFzaz̄b
in the complex coordinate frame are similarly written

in terms ofAza andAz̄a . The ASDYM equations in the complex coordinate frame take the
neat form

Fz1z2 = 0, Fz̄1z̄2 = 0, Fz1z̄1 + Fz2z̄2 = 0. (2.9)

2.3. Reduced form of ASDYM equations

It is well known that the ASDYM equations can be converted to a (classical) field theory
with a Lagrangian formalism. Actually, two types of such expressions are known. One is
Yang’s equation [14] (also called the four-dimensional Donaldson–Nair–Schiff equation
[15,16,55,56]). Another expression is due to Leznov [17] and Parkes [18]. Both can be
extended to the noncommutative space–time as follows.

Let us consider the first equationFz1z2 = 0 of the ASDYM equations. This is a par-
tial (two-dimensional) flatness condition. In the ordinary (complexified) space–time, this
implies thatAz1 andAz2 can be expressed as

Az1 = h−1∂z1h, Az2 = h−1∂z2h (2.10)
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with anN ×N matrix-valued functionh of the space–time coordinates. (Of course, this is,
in general, a local expression.) This expression persists to be true on the noncommutative
space–time if the ordinary product in the matrix multiplication are replaced by the?-product:

Az1 = (h)−1
? ? ∂z1h, Az2 = (h)−1

? ? ∂z2h. (2.11)

Here(h)−1
? stands for an inverse with respect to the?-product, namely,h? (h)−1

? = (h)−1
? ?

h = 1. One can prove this?-product version of Frobenius’ theorem in much the same way
as a proof in the ordinary space–time.

In order to derive a?-product analog of Yang’s equation, we solve another flatness
conditionFz̄1,z̄2 = 0 in the ASDYM equation as

Az̄1 = (k)−1
? ? ∂z̄1k, Az̄2 = (k)−1

? ? ∂z̄2k, (2.12)

and the “matrix-ratio”

g = k ? (h)−1
? (2.13)

of h andk. As we shall show below, this matrix-valued field turns out to obey the field
equation

∂z1((g)−1
? ? ∂z̄1g)+ ∂z2((g)−1

? ? ∂z̄2g) = 0. (2.14)

This gives an analog of Yang’s equation on the noncommutative space–time. The Lagrangian
formalism in the commutative case can be readily extended to the noncommutative case.
Note that the field equation

∂z((g)−1
? ? ∂z̄g)+ ∂z̄((g)−1

? ? ∂zg) = 0 (2.15)

of the noncommutative PCF model [10] can be derived by dimensional reduction.
The foregoing noncommutative analog of Yang’s equation can be derived by the following

trick. Let us consider the finite gauge transformation byh. Two of the four gauge potentials,
Aza (a = 1, 2), are thereby gauged away as

∇za → h ◦ ∇za ◦ (h)−1
? = ∂za , (2.16)

and the other two are transformed as

∇z̄a → h ◦ ∇z̄a ◦ (h)−1
? = ∂z̄a − ∂z̄ah ? (h)−1

? + h ? (k)−1
? ? ∂z̄a k ? (h)−1

?

= ∂z̄a + (g)−1
? ? ∂z̄a g. (2.17)

The gauge potentials are now in ahalf-flat gauge in which two of the gauge potentials
vanish,

Az1 = 0, Az2 = 0, (2.18)

and the other two gauge potentials are written as

Az̄a = (g)−1
? ? ∂z̄a g. (2.19)
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The remaining equation,Fz1z̄1+Fz2z̄2 = 0 of the?-product ASDYM equations, which now
takes the simplified form

∂z1Az̄1 + ∂z2Az̄2 = 0, (2.20)

gives the?-product analog of Yang’s equation.
One can see, from this derivation of Yang’s equation, the existence of a field theoreti-

cal “dual” of Yang’s equation as well. Note that the?-product ASDYM equations in the
foregoing half-flat gauge withAz1 = Az2 = 0 consist of the two equations

∂z̄1Az̄2 − ∂z̄2Az̄1 + [Az̄1, Az̄2]? = 0, ∂z1Az̄1 + ∂z2Az̄2 = 0. (2.21)

If one solves the first equation as a partial flatness condition, as we have seen above, Yang’s
equation emerges from the second equation. Meanwhile, one can also solve the second
equation as

Az̄1 = −∂z2φ, Az̄2 = ∂z1φ (2.22)

for a matrix-valued potentialφ. The first equation then takes the form

(∂z1∂z̄1 + ∂z2∂z̄2)φ + [∂z1φ, ∂z2φ]? = 0. (2.23)

This is a?-product version of the field equation of Leznov and Parkes.

3. Twistor theory and integrability

3.1. Twistor geometry

Twistor theory encodes various fields on space–time to a geometric structure on another
(complex) manifold called the “twistor space” [19,20]. In the case of four-dimensional
flat space–time, the twistor space is the three-dimensional complex projective spaceP

3
C

.
Roughly speaking, twistor theory is a kind of “tomography”, namely, to “scan” the space–
time by a three-parameter family of two-dimensional surfaces (“twistor surfaces”)S(ξ)

labeled by the pointξ of the twistor space. We review the essence of twistor geometry in
the following.

To define the twistor surfaces, however, the real (Euclidean) space–timeR
4 has to be

extended to the complexified space–timeC4, in which(z1, z2, z̄1, z̄2) areindependentcom-
plex coordinates. The twistor surfaces in the complexified space–timeC

4 are labeled by
three parameters(λ, u1, u2), and defined by the equations

z1− λz̄2 = u1, z2+ λz̄1 = u2. (3.1)

The parameters(λ, u1, u2) are local coordinates on a coordinate patch of the whole twistor
spaceP3

C
. Furthermore,λ turns out to play the role of the “spectral parameter” in the theory

of integrable systems.



296 K. Takasaki / Journal of Geometry and Physics 37 (2001) 291–306

Various real space–times, such as the Minkowski space–time and the space–time with
(2, 2) signature, are embedded in the complexified space–timeC

4 as “real slices”. Although
the twistor surfaceS(λ, u1, u2) intersects with the Euclidean space–time at most at a point,
the intersection with the Minkowski space–time is a null line, and the intersection with the
2+ 2 space–time is a totally null surface (i.e., the inner product of any two tangent vectors
vanish).

The twistor spaceP3
C

itself appears in the description of a compactified space–time, such
as the one-point compactificationS4 = R4 ∪ {∞} of the Euclidean space–time. Let us
introduce the complex Grassmann variety

GrC(2, 4) = {V2|V2 ⊂ C4, dimV2 = 2} (3.2)

of vector subspaces ofC4 and the flag variety

FlC(1, 2, 4) = {(V1, V2)|V1 ⊂ V2 ⊂ C4, dimV1 = 1, dimV2 = 2} (3.3)

of pairs of nested vector subspaces ofC4. The Grassmann variety is a natural complexifica-
tion of S4. Twistor geometry connects these compact (and complexified) space–times with
the twistor spaceP3

C
by the “Klein correspondence”

GrC(2, 4)
p2←FlC(1, 2, 4)

p1→P3
C
, (3.4)

where the projectionsp1 andp2 send the flag(V1, V2) to V1 ∈ P3
C

andV2 ∈ GrC(2, 4), re-

spectively. The subsetS(ξ) = p2(p
−1
1 (ξ)) is isomorphic toP2

C
and gives a compactification

of the foregoing twistor surfaceS(λ, u1, u2) inC4. Similarly, the subsetL(x) = p1(p
−1
2 (x))

is isomorphic toP1
C

and plays a key role indecodingthe twistorial data.
The uncompactified space–timeR4 (or, rather, its complexificationC4) can be described

by the open twistor space

T = P3
C
\ P1
C

(3.5)

with a lineP1
C

deleted. It is rather this twistor space that we mostly consider in the following.
This open twistor space has the projection

π : T → P1
C
, ξ = [ξ0 : ξ1 : ξ2 : ξ3] 7→ [ξ0 : ξ1], (3.6)

and is covered by the two standard coordinate patchesU = {ξ0 6= 0} andÛ = {ξ1 6= 0}.
The deleted lineP1

C
is the locus whereξ0 = ξ1 = 0. The three parameters(λ, u1, u2) can

be identified with the standard local coordinates onU :

λ = ξ1

ξ0
, u1 = ξ2

ξ0
, u2 = ξ3

ξ0
. (3.7)

Thus, in particular,λ is an affine coordinate of the base, andu1 andu2 are coordinates along
the fibers.
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3.2. Flatness on twistor surfaces

The three members of the ASDYM equations can be combined to a single equation of
the form

F(∂z̄1 − λ∂z2, ∂z̄2 + λ∂z1) = Fz1z2 − λ(Fz1z̄1 + Fz2z̄2)+ λ2Fz̄1z̄2 = 0. (3.8)

HereF(v, v′) stands for the contraction ofF by two vector fieldsv, v′. Since the two vector
fields ∂z̄1 − λ∂z2, ∂z̄2 + λ∂z1 on the left-hand side span the tangent planes of the twistor
surfaceS(λ, u1, u2), the foregoing equation means the flatness

F |S(λ,u1,u2) = 0 (3.9)

of the connection on all twistor surfaces.
Frobenius’ theorem connects this flatness (or “zero-curvature”) condition with the inte-

grability of the linear system [21–23]

(∇z̄1 − λ∇z2)Ψ (λ) = 0, (∇z̄2 + λ∇z1)Ψ (λ) = 0, (3.10)

whereΨ (λ) is a vector- or matrix-valued unknown function (which, of course, depends on
the space–time coordinates as well). Having this linear system, one can now apply a number
of techniques for integrable systems to the ASDYM equations [5].

Note that the first two equations of the ASDYM equations (from whichh andk were
derived) correspond to the flatness on the twistor surfaces withλ = 0 andλ = ∞. Ac-
cordingly, one can choose two matrix-valued solutionsΨ (λ) andΨ̂ (λ) of (3.10) to be such
that

Ψ (0) = h, Ψ̂ (∞) = k. (3.11)

In other words,Ψ (λ) andΨ̂ (λ) are one-parameter deformations ofh andk. Moreover, the
Laurent expansion

Ψ (λ) = h+
∞∑

n=1

wnλ
n, Ψ̂ (λ) = k +

∞∑
n=1

ŵnλ
−n (3.12)

of these solutions of (3.10) are related to two infinite series of nonlocal conservation laws
[22,23]. There is no reason that these two solutions coincide. They rather give a pair that
arise in the so-called Riemann–Hilbert problem. We now turn to this issue.

3.3. Vector bundle and Riemann–Hilbert problem

The twistor transformation [24–27] encodes a solution of the ASDYM equations to a
holomorphic vector bundleE over the twistor space. Given a solution of the ASDYM
equations, one can consider an associated rankN vector bundleE over the space–time with
an induced connection. This connection is flat on each twistor surfaceS(ξ). The fiberEξ
of the bundleE at a pointξ of the twistor space is, by definition, the vector space of flat
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sections ofE|S(ξ). In a down-to-earth language, the fiberEξ is the vector space ofE-valued
solutions of linear system (3.10) restricted toS(λ, u1, u2).

This bundleE need not be defined over the whole twistor space. If the solution of the
ASDYM equations is defined in a small neighborhood of a space–time pointx, the bundle
E is accordingly defined only in a neighborhood of the lineL(x) = {ξ ∈ P3

C
|x ∈ S(ξ)}.

Instanton solutions are global solutions that give rise to a globally defined vector bundle on
the whole twistor space.

The holomorphic vector bundleE has the special property that the restrictionE |L(x) to
the lineL(x) ' P1

C
is holomorphically trivial for any space–time pointx in the domain

where the gauge potentials are defined. This property ofE plays a key role in theinverse
transformation, namely, to reproduce the solution of the ASDYM equation from the vector
bundleE .

It is here that the notion of Riemann–Hilbert problem emerges. Let us recall that any
holomorphic vector bundle overP1

C
can be represented by the “patching function”p(λ) on

the intersectionD∩D̂ of two affine coordinate patches{D, D̂} ofP1
C

. The patching function
p(λ) is aGL(N,C)-valued holomorphic function. If the vector bundle is holomorphically
trivial, the patching function can be expressed as

p(λ) = Ψ̂ (λ)−1Ψ (λ), (3.13)

whereΨ (λ) and Ψ̂ (λ) are GL(N,C)-valued holomorphic functions ofλ on D and D̂,
respectively. Finding such a pair of matrix-valued functions to the given datap(λ) is a
kind of Riemann–Hilbert problem (also called the “splitting” problem in the terminology
of Ward).

The patching functionp(λ) is determined by a patching function of the vector bundle
E itself. As already remarked, the twistor spaceT = P3

C
\ P1
C

is covered by the two

coordinate patchesU and Û . The vector bundleE is described by aGL(N,C)-valued
function P(λ, u1, u2) that glues together the rank-N trivial bundles overU and Û . Its
restriction on the lineL(x) is nothing but the patching functionp(λ) of E |L(x):

p(λ) = P(λ, z1− λz̄2, z2+ λz̄1). (3.14)

In particular, the patching functionp(λ) turns out to obey the linear differential equations

(∂z̄1 − λ∂z2)p(λ) = 0, (∂z̄2 + λ∂z1)p(λ) = 0. (3.15)

(Note that this is a rather simplified setup. If the solution is defined in a general domain of
space–time, we need a more refined cohomological language — see Ivanova’s review [28]
and references cited therein.)

Given such a patching function, one can prove that the Riemann–Hilbert problem indeed
solves the ASDYM equations. We shall review this proof later on in the framework of the
noncommutative space–time. The converse is also true. Namely, ifΨ (λ) andΨ̂ (λ) are a
pair ofarbitrary solutions of (3.10), its matrix ratiôΨ (λ)−1Ψ (λ) satisfies Eq. (3.15). This
can be confirmed by direct calculations.

Solving the Riemann–Hilbert problemexplicitly is usually very difficult. Explicit so-
lutions are known for special cases only. The so-called “Ward Ansatz” (or “Atiyah–Ward
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Ansatz”) solutions [25,29,30] provide such an example. The corresponding Riemann–Hilbert
problem can be solved by linear algebra.

The existence of a large set of hidden symmetries of the ASDYM equations [31,32] can
be explained by the Riemann–Hilbert problem [33,34]. Those symmetries are generated by
the left and right action

p(λ) 7→ gL(λ)p(λ)gR(λ)−1 (3.16)

of GL(N,C)-valued functionsgL(λ) andgR(λ) of (λ, z1−λz̄2, z2+λz̄1). The infinitesimal
form of these symmetries can be determined explicitly and reproduces the previously known
results [35,57]. For subsequent progress on finite transformations, see Popov’s paper [36].

3.4. Integrability of?-product ASDYM equations

Having reviewed the twistorial and integrable structures of the ordinary ASDYM equa-
tions, we now turn to the?-product ASDYM equations.

The geometric setup of twistor theory can be extended to the noncommutative space–time
rather straightforward. To see this, let us notice that the commutation relations of the complex
coordinates(z1, z2, z̄1, z̄2) can be rewritten as

[z1− λz̄2, z2+ λz̄1] = −ζC − λζR + λ2ζ̄C. (3.17)

The linear combinations of the space–time coordinates on the left-hand side are exactly
those in the definition of the twistor surfaceS(λ, u1, u2). Accordingly, whereasλ persists
to be a commutative coordinate, the coordinatesu1 andu2 of the fibers ofπ : T → P1

C

turn out to have to obey the commutation relation

[u1, u2] = −ζC − λζR + λ2ζ̄C. (3.18)

Thus the twistor space, like the space–time, becomes a noncommutative manifold. This will
be an alternative interpretation of the results of Kapustin et al. [2].

The linear system forΨ (λ) is now replaced by the?-product version

(∇z̄1 − λ∇z2) ? Ψ (λ)= (∂z̄1 − λ∂z2)Ψ (λ)+ (Az̄1 − λAz2) ? Ψ (λ) = 0,

(∇z̄2 + λ∇z1) ? Ψ (λ)= (∂z̄2 + λ∇z1)Ψ (λ)+ (Az̄2 + λAz1) ? Ψ (λ) = 0. (3.19)

Although the notion of vector bundles on the noncommutative twistor space is complicated
[2], the Riemann–Hilbert problem itself remains intact except that the productΨ̂ (λ)−1Ψ (λ)

is replaced by the?-product:

p(λ) = (Ψ̂ (λ))−1
? ? Ψ (λ). (3.20)

The patching functionp(λ) is required to satisfy the same linear differential equations as
(3.15), or, equivalently, to be of the formP(λ, z1− λz̄2, z2+ λz̄1).

Let us confirm that this Riemann–Hilbert problem indeed solves the?-product ASDYM
equations. The reasoning is fully parallel to the ordinary ASDYM equations. We first note
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that (3.15) implies the equations

(∂z̄1 − λ∂z2)Ψ (λ) ? (Ψ (λ))−1
? = (∂z̄1 − λ∂z2)Ψ̂ (λ) ? (Ψ̂ (λ))−1

? ,

(∂z̄2 + λ∂z1)Ψ (λ) ? (Ψ (λ))−1
? = (∂z̄2 + λ∂z1)Ψ̂ (λ) ? (Ψ̂ (λ))−1

? . (3.21)

SinceD andD̂ cover the whole Riemann sphere, both hand sides of these equations define a
matrix-valued meromorphic function with the only possible poles being atλ = ∞ and of the
first order. By Liouville’s theorem, they are a linear function ofλ with matrix coefficients.
Let us express these linear functions as−Az̄1 + λAz2 and−Az̄2 − λAz1. The coefficients
Az1, Az2, Az̄1, Az̄2 are to be identified with the gauge potentials. ThusΨ (λ) andΨ̂ (λ) turn
out to satisfy (3.19), from which the?-product ASDYM equations are derived.

The other part of the forgoing discussion, too, can be mostly extended to the noncom-
mutative space–time. For instance, hidden symmetries are again generated by the action

p(λ) 7→ gL(λ) ? p(λ) ? gR(λ)−1 (3.22)

of GL(N,C)-valued functionsgL(λ) andgR(λ) of (λ, z1− λz̄2, z2+ λz̄1). The associated
infinitesimal symmetries take the same form as those for the ordinary ASDYM equations
(with, of course, the product of space–time functions being replaced by the?-product).

An essential difference can be seen in the places where finite dimensional linear algebra is
used. A typical example is the Ward Ansatz. In the noncommutative framework, such a linear
algebraic structure has to be replaced by an infinite dimensional counterpart. As for the Ward
Ansatz, for instance, we do not know how to extend it to the?-product ASDYM equations.

4. Deformed ADHM construction

4.1. How to deform ADHM construction

The ordinary ADHM construction [3,4] of anU(N)-instanton solution with instanton
numberk is based on the 2k × (2k +N) matrix-valued function

1(z) =
(

B1+ z11 B2+ z21 I

−B
†
2 − z̄21 B

†
1 + z̄11 J†

)
(4.1)

of z = (z1, z2, z̄1, z̄2). HereB1 andB2 arek×k matrices,I ak×N matrix,J anN×k matrix,

andB
†
1 , B

†
2 , I†, J† their Hermitian conjugate. Assuming a nondegeneracy condition, one

can construct a(2k +N)×N matrixv(z) that satisfies the equations

1(z)v(z) = 0, v(z)†v(z) = 1. (4.2)

If the so-called ADHM equations

[B1, B2] + IJ = 0, [B1, B
†
1 ] + [B2, B

†
2 ] + II†− J†J = 0 (4.3)

are satisfied, the gauge potentials defined by

A = v(z)† dv(z) (4.4)

give a solution (instanton solution) of the ASDYM equations.
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As Nekrasov and Schwarz [1] pointed out, the instanton solutions of the ASDYM equa-
tions on the noncommutativeR4 can be obtained by deforming the ADHM equations as

[B1, B2] + IJ = ζC1, [B1, B
†
1 ] + [B2, B

†
2 ] + II†− J†J = ζR1. (4.5)

The connection form is now given by the?-product

A = v(z)† ? dv(z). (4.6)

4.2. Solution of Riemann–Hilbert problem

We here present, as an application of the ADHM construction, an explicit construction of
the solution of the Riemann–Hilbert problem for the instanton solutions. This is based on
the work of Corrigan et al. [37] on the Dirac equation with the instanton gauge potentials.

According to one of their results, the parallel translation (i.e., the “Wilson line operator”)

w(z, z′) = P − exp

(∫ z

z′
A

)
(4.7)

between two pointsz, z′ on the same twistor surfaceS(λ, u1, u2) is given by the simple
formula

w(z, z′) = v(z)†v(z′). (4.8)

Consequently, this matrix obeys the group law

w(z, z′)w(z′, z′′) = w(z, z′′) (4.9)

for any triplez, z′, z′′ of points onS(λ, u1, u2).
Let us apply this group law to the special points

z∞(λ) = (z1− λz̄2, z2+ λz̄1, 0, 0),

z0(λ) = (0, 0, z̄1+ λ−1z2, z̄2− λ−1z1) (4.10)

that are on the same twistor surface asz = (z1, z2, z̄1, z̄2). Accordingly, we have the relation

w(z∞(λ), z0(λ)) = w(z, z∞(λ))−1w(z, z0(λ)). (4.11)

This relation is exactly the Riemann–Hilbert problem with the patching function

p(λ) = w(z∞(λ), z0(λ)) (4.12)

for which we thus obtain the explicit solution

Ψ (λ) = w(z, z0(λ)), Ψ̂ (λ) = w(z, z∞(λ)). (4.13)

This construction carries over to the noncommutative case if the ordinary matrix products
therein are replaced by the?-product. The parallel translation along the twistor surface is
given by the?-product

w(z, z′) = v(z)† ? v(z′), (4.14)

and the foregoing expressions ofg(λ), Ψ (λ) andΨ̂ (λ) remain valid.
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4.3. Remarks on ADHM equations

It is well known that the left-hand side of the ADHM equations, i.e.,

µC = [B1, B2] + IJ, µR = [B1, B
†
1 ] + [B2, B

†
2 ] + II†− J†J, (4.15)

are a pair of moment maps for the hyper-Kähler quotient construction [38] of the mod-
uli space of (both undeformed and deformed) ADHM instantons. In particular, the pair
(µC, µR) transforms just like the three-vector(ζC, ζR) under theSU(2) rotation (2.4)
of space–time coordinates. Therefore it is natural to combine the three moment maps

µC, µR, µ
†
R

to the one-parameter family

µ(λ) = µC + λµR − λ2µ
†
C
= [B1− λB

†
2 , B2+ λB

†
1 ] + (I − λJ†)(J + λI†)

(4.16)

of moment maps. TheSU(2) action is now represented by fractional transformations ofλ:

λ 7→ −β + αλ

ᾱ + β̄λ
. (4.17)

A “pencil” of moment maps of this type generally appears in the quotient construction of
the twistor space associated with a hyper-Kähler quotient [38]. The twistor spaceZ of a
hyper-Kähler manifold is fibered overP1

C
by a mapπ : Z → P1

C
, and each fiberπ−1(λ)

is a complex symplectic manifold. The moment mapµ(λ) is used to make the symplectic
quotient ofπ−1(λ). Roughly speaking, this fiberwise symplectic quotient ofZ gives the
twistor space for the hyper-Kähler quotient.

This pencil of moment maps is also interesting in the context of finite dimensional inte-
grable systems. Following, Gorsky et al. [39], let us introduce the symplectic form

Ω = Tr(dB1 ∧ dB2+ dI ∧ dJ ) (4.18)

on the space of the quadruples(B1, B2, I, J ). As they pointed out,µC may be interpreted
as the moment map of the action

(B1, B2, I, J ) 7→ (gB1g
−1, gB2g

−1, gI, Jg−1) (4.19)

of G = GL(N,C), and the reduced phase space (actually, withI and J being fur-
ther constrained to a specialG-orbit) has the structure of an integrable system with the
Poisson-commutative Hamiltonians TrB`

2, ` = 1, . . . , N . If k is equal to 1 andB1 and
B2 are restricted to Hermitian matrices, this integrable system reduces to the rational
Calogero–Moser system; the case fork > 1 is related to a generalized Calogero–Moser
system [40]. Now, what occurs if one repeats the same construction for the pencilµ(λ) of
moment maps? Note that the symplectic form, too, has to be deformed as

Ω(λ) = Tr(d(B1− λB
†
2 ) ∧ d(B2+ λB

†
1 )+ d(I − λJ†) ∧ d(J + λI†)). (4.20)

Upon taking the symplectic quotient, a one-parameter family of integrable systems will
emerge. In fact,Ω(λ) is exactly the symplectic form of the fiberπ−1(λ) of the twistor
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space before taking the quotient. Thus the phase space of the aforementioned one-parameter
family of integrable systems turns out to be nothing but the fibersπ−1(λ) of the twistor
space of the instanton moduli space.

5. Two-dimensional reductions

5.1. PCF model and Hitchin’s equations

We here examine the PCF model and Hitchin’s Higgs pair equations as dimensional
reductions of the ASDYM equations.

The PCF model can be derived by letting

∇z̄1 → ∂z + Az, ∇z2 → ∂z, ∇z̄2 → ∂z̄ + Az̄, ∇z1 → ∂z̄ (5.1)

under the gaugeAz1 = Az2 = 0. The associated linear system reads

((1− λ)∂z − Az)Ψ (λ) = 0, ((1+ λ)∂z̄ + Az̄)Ψ (λ) = 0. (5.2)

On the noncommutative space–time,z andz̄ are assumed to obey the commutation relation

[z, z̄] = −ζ1 (5.3)

for a real constantζ , and the linear system is replaced by the?-product analog

((1− λ)∂z − Az) ? Ψ (λ) = 0, ((1+ λ)∂z̄ + Az̄) ? Ψ (λ) = 0. (5.4)

Conservation laws, infinitesimal symmetries, the Riemann–Hilbert problem, etc.1 can be
extended to the?-product PCF model straightforward.

Hitchin’s Higgs pair equations

Fzz̄ = [Φ, Φ†], ∇z̄Φ = 0, ∇zΦ
† = 0 (5.5)

can be derived from the ASDYM equations by first exchangingz2↔ z̄2 (which interchanges
anti-self-duality and self-duality), then reducing

∇z̄2 → ∇z, ∇z1 → Φ, ∇z2 → ∇z̄, ∇z̄1 → Φ†, (5.6)

while letting∂z1 → 0 and∂z̄1 → 0. The associated linear system can be written as

(∇z + λΦ)Ψ (λ) = 0, (∇z̄ − λ−1Φ†)Ψ (λ) = 0. (5.7)

A natural?-product analog of these equations are, of course,

Fzz̄ = [Φ, Φ†]?, ∇z̄ ? Φ = 0, ∇z ? Φ† = 0, (5.8)

(∇z + λΦ) ? Ψ (λ) = 0, (∇z̄ − λ−1Φ†) ? Ψ (λ) = 0. (5.9)

1 A detailed exposition of these issues, along with a large list of references, can be found in [41].
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5.2. Some more remarks on Hitchin’s equations

Hitchin’s equations are formulated on any compact Riemann surface [7]. If the genus
of the Riemann surface is greater than one, the moduli space of “stable” Higgs pairs is
a smooth (but noncompact) symplectic manifold with the structure of an “algebraically
integrable Hamiltonian system” [42]. (This fact is further extended to punctured Riemann
surfaces including tori.) The “spectral curve” det(Φ − ζ1) = 0 plays a central role therein.

What about the?-product analog of Hitchin’s equations? Unfortunately, we do not know
if the moduli space of solutions has any structure of an integrable system, because, first of
all, the notion of determinant (hence, of spectral curve) ceases to exist. This is a place where
a linear algebraic structure breaks down again. One can nevertheless expect that some yet
unknown mechanism might give rise to an integrable structure in the moduli space solutions.
This issue will be closely related to the notion of “noncommutative Riemann surfaces” that
has been pursued by Bertoldi et al. [43].

Let us finally mention that Hitchin’s equations are also related to a class of conformal
field theories — e.g., the (nonaffine) Toda field theories [44] andW -gravity [45,46]. The
associated?-product analogs will be interesting from the point of view of the Chern–Simons
and WZW models on noncommutative spaces [8–12]. Note, however, that the naive substi-
tution prescription eα·φ → (eα·φ)? in the Toda field theories does not lead to an integrable
system. A correct integrable deformation is the so-called “non-Abelian Toda field theory”,
which does not take such an exponential form.

6. Conclusion

We have shown that many properties of the ASDYM equations are inherited by its analog
on the noncommutativeR4. After all, the rule of game is quite simple — just to replace
the ordinary product by the?-product. This rather naive prescription has turned out to fit
surprisingly well into the twistorial and integrable structures of the ASDYM equations.
Moreover, these structures are preserved under dimensional reduction to the PCF model
and Hitchin’s Higgs pair equations. However, linear algebraic structures, such as the Ward
Ansatz solutions, mostly loose its meaning in the noncommutative space–times.

We have also pointed out a few interesting structures in the ADHM construction. These
structures deserve to be studied in more detail.

Another important issue, which we have not addressed in this paper, is that of the Nahm
equations. The Nahm construction of BPS monopoles [47–49] has been extended to a
noncommutative space–time [50], in which a?-product analog of the Nahm equations is
used. The?-product Nahm equations have been independently studied in the context of the
M -theory as well [51–53].
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